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Abstract. The constituent quark model based on a hypercentral approach takes into account three-body
force effects and standard two-body potential contributions. The quark potential contains a hypercentral
interaction, to which a hyperfine term is added. While the hypercentral potential supplies good values for
the centroid energies of the resonance multiplets and a realistic set of quark wave functions, the hyperfine
splittings are sometimes not sufficient to account for the observed masses. In this work we have introduced
an improved form of the hyperfine interaction and an isospin-dependent quark potential. The resulting
description of the baryon spectrum is very good, also for the Roper resonance, specially thanks to the
flavour-dependent interaction.

PACS. 12.39.Jh Nonrelativistic quark model – 12.39.Pn Potential models – 14.20.Gk Baryon resonances
with S = 0

1 Introduction

Constituent Quark Models (CQMs) have been recently
widely used for the description of the internal structure of
baryons [1–6]. The baryon spectrum is usually described
well, although the various models are quite different. How-
ever the study of hadron spectroscopy is not sufficient to
distinguish among the various forms of quark dynamics.
To this end one has to study in a consistent way all the
physical observables of interest, in particular, besides the
spectrum, the photocouplings, the electromagnetic form
factors and the strong decay amplitudes. Such a system-
atic study of baryon properties is better performed within
a general framework, and in this respect a hypercentral
approach to quark dynamics can be used [6]. The model
consists of a hypercentral quark interaction containing
a linear plus Coulomb-like term, as suggested by lattice
QCD calculations [7,8]. A hyperfine term of the stan-
dard form [1] is added and treated as a perturbation. The
few free parameters of the model are fitted to the spec-
trum, the resulting baryon states are then used in order
to calculate the various properties of interest, in particu-
lar the photocouplings [9], the transition form factors [10,
11] and the elastic electromagnetic form factors of the nu-
cleon [12]. The electromagnetic properties are evaluated
using a nonrelativistic current for point-like quarks, also
taking into account the effects of relativistic corrections
[11,12]. In particular this parameter-free calculation pre-
dicts that the ratio of the electric and magnetic proton
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factors decreases with Q2 [13], as shown by the recent TJ-
NAF experiment [14].

The description of the nonstrange-baryon spectrum
obtained by the hypercentral Constituent Quark Model
(hCQM) [6] is fairly good and comparable to the results
of other approaches. In particular, the SU(6) structure of
the levels is accounted for, thanks to the spin-independent
hypercentral interaction; the ∆ − N mass difference is
correctly described by the hyperfine splitting and the
theoretical energies of the negative-parity resonances are
in good agreement with data. However, notwithstanding
such overall fair description of the spectrum, in some cases
the splittings within the various SU(6) multiplets are too
low. This is particularly true for the Roper resonances
and for the higher states. A possible origin of these prob-
lems could be the (widespread) use of a δ-like hyperfine
interaction. To this end we have introduced different kinds
of space smearings; the resulting hyperfine term becomes
acceptable from the theoretical point of view, but, as we
shall show below, it does not improve the description of
the spectrum.

A more important issue is the flavour dependence of
the quark interaction. Actually, within the algebraic ap-
proach, the quark energy is written in terms of Casimir
operators of symmetry groups which are relevant for the
three-quark dynamics; in this respect it is quite natu-
ral to introduce an isospin-dependent term, which turns
out to be important for the description of the spec-
trum [5,15]. On the other hand, in the chiral constituent
quark model recently proposed [4,16], the splittings are
produced by the one-boson-exchange interaction between
quarks and therefore a flavour-dependent potential arises,
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which seems to be important in order to describe the
baryon spectrum, at least below 1.7GeV.

In the following, we shall show that in the hCQM a
flavour-dependent potential can be introduced [17] as a
perturbative term leading to improved splittings within
the SU(6) multiplets. In particular, in this way, the Roper
resonance is reproduced quite well and the higher states
acquire a much larger splitting, in agreement with data.

In sect. 2 we recall briefly the model and the main
results in the description of the spectrum and the electro-
magnetic excitation of the baryon resonances. In sect. 3
we introduce in the hCQM a generalized SU(6) breaking
interaction treated as a perturbation and we show the re-
sults of the model compared with the experimental spec-
trum. Finally, in sect. 4 there are some discussions and
conclusions.

2 The hypercentral model

The internal quark motion is described by the Jacobi co-
ordinates ρ and λ:

ρ =
1√
2
(r1 − r2),λ =

1√
6
(r1 + r2 − 2r3), (1)

or equivalently, ρ, Ωρ, λ, Ωλ. In order to describe the
three-quark dynamics it is convenient to introduce the hy-
perspherical coordinates, which are obtained substituting
the absolute values ρ and λ by

x =
√

ρ2 + λ2, ξ = arctg
(ρ

λ

)
, (2)

where x is the hyperradius and ξ the hyperangle. In this
way one can use the hyperspherical harmonic formalism
[18].

In the hypercentral constituent quark model (hCQM),
the quark potential, V , is assumed to depend on the hy-
perradius x only, that is to be hypercentral. Therefore,
V = V (x) is in general a three-body potential, since the
hyperradius x depends on the coordinates of all the three
quarks. Since the potential depends on x only, in the three-
quark wave function one can factor out the hyperangular
part, which is given by the known hyperspherical harmon-
ics [18]. The remaining hyperradial part of the wave func-
tion is determined by the hypercentral Schrödinger equa-
tion

[
d2

dx2
+

5
x

d
dx

− γ(γ + 4)
x2

]
ψ[γ](x) =

−2m[E − V (x)]ψ[γ](x), (3)

where ψ[γ](x) is the hypercentral wave function and γ is
the grand angular quantum number given by γ = 2v+lρ+
lλ; lρ and lλ are the angular momenta associated with the
ρ and λ variables and v is a nonnegative integer number.

There are at least two hypercentral potentials which
lead to analytical solutions. First, the h.o. potential, which

has a two-body character, turns out to be exactly hyper-
central, since

∑
i<j

1
2
k(ri − rj)2 =

3
2
kx2 = Vh.o.(x). (4)

The second one is the “hyperCoulomb” potential [19–21]

VhyC(x) = −τ

x
. (5)

This potential is not confining, however it has interesting
properties. In fact it leads to a power law behaviour of the
proton form factor [20] and of all the transition form fac-
tors [22,23]. Moreover it has an exact degeneracy between
the first 0+ excited state and the first 1− states [24,20,
21], which can be respectively identified with the Roper
resonance and the negative-parity resonances. This degen-
eracy seems to be in agreement with phenomenology and
is typical of an underlying O(7) symmetry [21]. This fea-
ture cannot be reproduced in models with only two-body
forces and/or harmonic-oscillator bases since the excited
L = 0 state, having one more node, lies above the L = 1
state [24].

The dynamic symmetry O(7) of the hyperCoulomb
problem can be used to obtain the eigenvalues using purely
algebraic methods, similarly to what is done in the hy-
drogen atom case with the O(4) symmetry. In fact, the
hyperCoulomb Hamiltonian can be rewritten as [21]

H = − τ2m

2[C2(O(7)) + 25
4 ]

, (6)

where C2(O(7)) is the quadratic Casimir invariant of O(7),
and the energy eigenvalues become

E = − τ2m

2(n + 5/2)2
, (7)

where n is a nonnegative integer [21].
As a confining hypercentral potential in our model, we

have assumed a form [6]

V (x) = −τ

x
+ αx , (8)

that means a Coulomb-like term plus a linear confining
term as suggested by lattice QCD calculations [7,8]. In
order to describe the splittings within the SU(6) multi-
plets, we introduce a hyperfine interaction of the stan-
dard form [1] and we treat it as a perturbation. Having
fixed the quark mass m to 1/3 of the nucleon mass, the
remaining three free parameters (τ , α and the strength of
the hyperfine interaction) are fitted to the spectrum. The
strength of the hyperfine interaction is determined by the
∆−N mass difference and the spectrum is described with
τ = 4.59 and α = 1.61 fm−2. Having fixed the parameters
of the potential, the wave functions of the various reso-
nances are completely determined and have been used for
the calculation of the photocouplings [9], the transition
form factors to the negative-parity resonances [10], the
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elastic form factors [12] and the ratio between the electric
and magnetic form factors of the proton [13].

The resulting overall description of the experimental
data is quite good, however there are some problems. As
far as the spectrum is concerned, the model fails to re-
produce the Roper resonance and the higher levels. The
evaluated size of the nucleon is too low, since the result-
ing r.m.s. radius is 0.46 fm and this affects the description
of the elastic form factors. The introduction of relativis-
tic corrections substantially improves the calculated form
factors [11,13] but it is not enough. The strength of the
helicity amplitudes are underestimated, as it happens in
all constituent quark models.

There may be different reasons for such discrepancies.
The splittings within the multiplets are not all adequately
described by the hyperfine interaction. One should remind
that the form we have assumed for the hyperfine interac-
tion contains a δ-like term, which is troublesome from the
theoretical point of view. Furthermore, the splittings can
be originated also by other terms, for instance isospin-
dependent ones [5,4].

Another possible reason of the discrepancies is the fact
that the model does not contain any explicit quark pair
creation mechanism, which is expected to be particularly
important for the description of the eletromagnetic exci-
tation [25,9,10] but may lead to some residual effects also
in the spectrum [26–28]. In the latter case, the creation of
quark-antiquark pairs could be the microscopic origin of
an isospin-dependent part of the potential. In this respect
the constituent quark potential has to be considered as an
effective potential in the three-quark subspace, taking into
account implicitly the missing Fock-space configurations.

3 The spin and isospin splittings

The standard hyperfine interaction is used in order to re-
produce the splittings within the SU(6) multiplets. As
mentioned above, it contains a δ-like term which is an
illegal operator. For this reason we have modified it by in-
troducing a smearing factor given by a Gaussian function
of the quark pair relative distance [17]:

HS = AS

∑
i<j

1
(
√

πσS)3
e−(r2

ij/σ2
S)(si · sj) , (9)

where si is the spin operator of the i-th quark and rij

is the relative quark pair coordinate. The results for the
spectrum are shown in fig. 1. The fitted parameters are
α = 1.58 fm−2, τ = 4.98, AS = 38.4 fm2, σS = 0.8 fm.
The correct limit for vanishing smearing is obtained, in
the sense that the spectrum of ref. [6] is reproduced.

We have also tried a smearing depending on the hy-
perradius x only of the form [17]:

HSpin = BS

(
1

ΛS
e−(x/ΛS)

) ∑
i<j

(si · sj) , (10)

where si is the spin operator of the i-th quark and x is
the hyperradius. The fitted parameters are α = 1.49 fm−2,
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Fig. 1. The spectrum obtained with the hypercentral poten-
tial, eq. (8), and the spin-dependent term, eq. (9). The fit-
ted parameters are α = 1.58 fm−2, τ = 4.98, AS = 38.4 fm2,
σS = 0.8 fm.

τ = 5.01, BS = 196.4 fm2, ΛS = 1.6 fm. There is an im-
provement for the higher states, however there is a too
strong degeneracy of the levels and the good agreement
for the negative-parity states obtained in the hCQM [6]
is lost. Therefore, in the following we shall use only the
hyperfine interaction with a two-body smearing.

As quoted in the previous sections, there are different
motivations for the introduction of a flavour-dependent
term in the three-quark interaction. The well known
Guersey-Radicati mass formula [15] contains a flavour-
dependent term, which is essential for the description of
the strange-baryon spectrum:

M̂ = M0 + aĈ2(SUSF (6)) + bĈ2(SUF (3))

+b′Ĉ2(SUI(2)) + b′′Ĉ1(UY (1))

+b′′′Ĉ2(UY (1)) + cĈ2(SUS(2)) , (11)

where M0 is fixed for any SU(6) multiplet, Ĉ2(SU(N))
is the Casimir of SU(N), Y is the hypercharge, I is the
total isospin and S the total spin. For nonstrange baryons
this formula implies an isospin dependence. In the alge-
braic description of baryon properties [5], the space part
of the mass operator is written in terms of the genera-
tors of the U(7) group, while for the internal degrees of
freedom the Guersey-Radicati mass formula [15] is used.
In the chiral Constituent Quark Model [4,16], the non-
confining part of the potential is provided by the interac-
tion with the Goldstone bosons, giving rise to a spin- and
isospin-dependent part, which is crucial for the descrip-
tion of the spectrum for energies lower than 1.7GeV. It
has been also pointed out quite recently that an isospin
dependence of the quark potential can be obtained by
means of quark exchange [29]. More generally, one can
expect that the quark-antiquark pair production can lead
to an effective quark interaction containing an isospin-
(or flavour)-dependent term. On the other hand, the fact
that the constituent quark model does not contain explic-
itly this mechanism is maybe the reason why the low Q2

behaviour of the electromagnetic transition form factors
is not reproduced [25,9].
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Fig. 2. The spectrum obtained with the complete interaction
of eq. (14), that means the hypercentral potential, of eq. (8),
plus the spin-dependent term, the isospin interaction and the
spin-isospin one (eqs. (9),(12),(13)). The fitted parameters are
α = 1.17 fm−2, τ = 4.95, AS = 67.4 fm2, σS = 2.87 fm, AI =
51.7 fm2, σI = 3.45 fm, ASI = −106.2 fm2, σSI = 2.31 fm.

With these motivations in mind, we have introduced
isospin-dependent terms in the hCQM Hamiltonian.

To this end we have added two terms in the three-
quark Hamiltonian with the hyperfine interaction of
eq. (9). The first one depends on the isospin only and
has the form:

HI = AI

∑
i<j

1
(
√

πσI)3
e−(r2

ij/σ2
I)(ti · tj) , (12)

where ti is the isospin operator of the i-th quark and rij

is the relative quark pair coordinate. The second one is a
spin-isospin interaction, given by

HSI =ASI

∑
i<j

1
(
√

πσSI)3
e−(r2

ij/σ2
SI)(si ·sj)(ti ·tj) , (13)

where si and ti are respectively the spin and isospin op-
erators of the i-th quark and rij is the relative quark pair
coordinate. The complete interaction is then given by

Hint = V (x) + HS + HI + HSI . (14)

The resulting spectrum for the 3* and 4* resonances is
shown in fig. 2 and in table 1. The N −∆ mass difference
is no more due only to the hyperfine interaction. In fact,
in this model its contribution is only about 35%, the re-
maining splitting comes from the spin-isospin term (50%)
and from the isospin one (15%).

It should also be noted that the inversion between
the Roper and the negative-parity resonances is almost
entirely due to the spin-isospin interaction, as stated in
ref. [4].

The tensor term coming from the hyperfine interac-
tion has been kept as well, however its contribution to the
spectrum is negligible.

In table 2 and table 3 we list all the remaining states
predicted by the model and when possible we give a temp-
tative assignation to one- and two-star states. We see that

Table 1. Mass spectrum of nonstrange baryon resonances.

Baryon Status Mexp Jπ Mtheor

(MeV) (MeV)

N(938)P11 **** 938 1
2

+
938

∆(1232)P33 **** 1230–1234 3
2

+
1232

N(1440)P11 **** 1430–1470 1
2

+
1463

∆(1600)P33 *** 1550–1700 3
2

+
1727

N(1535)S11 **** 1520–1555 1
2

−
1524

N(1520)D13 **** 1515–1530 3
2

−
1524

N(1650)S11 **** 1640–1680 1
2

−
1688

N(1700)D13 *** 1650–1750 3
2

−
1692

N(1675)D15 **** 1670–1785 5
2

−
1668

∆(1620)S31 **** 1615–1675 1
2

−
1573

∆(1700)D33 **** 1670–1770 3
2

−
1573

N(1710)P11 *** 1680–1740 1
2

+
1752

N(1720)P13 **** 1650–1750 3
2

+
1648

N(1680)F15 **** 1675–1690 5
2

+
1680

∆(1910)P31 **** 1870–1920 1
2

+
1953

∆(1920)P33 *** 1900–1970 3
2

+
1921

∆(1905)F35 **** 1870–1920 5
2

+
1901

∆(1950)F37 **** 1940–1960 7
2

+
1955

∆(1900)S31 *** 1850–1950 1
2

−
1910

the number of predicted states is higher than the presently
observed ones, that is, as in other models, we have the
problem of missing resonances. It is interesting to observe
that while the quality of the reproduction of the spec-
trum for the 3* and 4* resonances is quite the same for
the various Constituent Quark Models [1,2,5,4,16], there
are different predictions for the other states, that means
for 1*, 2* and missing resonances.

Recently in a three-channel multi-resonance amplitude
analysis it has been found evidence for a third low-lying
P11 state at 1740 ± 11MeV [30]. The first two P11 states
at 1439 ± 19MeV and 1729 ± 16MeV correspond to the
N(1440) and N(1710) of the PDG [31]. In the hCQM
the first three P11 states are at 1463MeV, 1752MeV and
1828MeV respectively. A new analysis of kaon photopro-
duction data [32] has shown evidence for a third D13 reso-
nance at 1895MeV, which can be described by one of the
states predicted by the present model (see table 2).

4 Discussions and conclusions

A considerable improvement in the description of the spec-
trum is obtained with an isospin-dependent potential. As
quoted in the previous section, a possible motivation of
the isospin-dependent terms of the quark interaction is
given by quark-antiquark pair production mechanisms.
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Table 2. All calculated nucleon resonances (in MeV) below
2 GeV. Tentative assignments of 1- and 2-star resonances are
shown in brackets.

State Mtheor Baryon

N
1
2
+

938 N(938)P11

N
1
2
+

1463 N(1440)P11

N
1
2
+

1752 N(1710)P11

N
1
2
+

1828

N
1
2
+

1894

N
1
2
+

1938 [N(2100)P11]

N
1
2
−

1524 N(1535)S11

N
1
2
−

1688 N(1650)S11

N
1
2
−

1861

N
1
2
−

2008 [N(2090)S11]

N
3
2
−

1524 N(1520)D13

N
3
2
−

1692 N(1700)D13

N
3
2
−

1860

N
3
2
−

2008 [N(2080)D13]

N
3
2
+

1648 N(1720)P13

N
3
2
+

1816

N
3
2
+

1894 [N(1900)P13]

N
3
2
+

1939

N
3
2
+

2034

N
5
2
+

1680 N(1680)F15

N
5
2
+

1833

N
5
2
+

2046 [N(2000)F15]

N
7
2
+

1939 [N(1990)F17]

N
5
2
−

1668 N(1675)D15

N
5
2
−

1984 [N(2200)D15]

This kind of mechanisms have been studied within the
string model in connection with the quenching problem of
quark models in the meson spectrum [26–28]. Their contri-
butions turn out to be mainly spin independent and can be
reabsorbed into the string parameter, so the residual part
can be considered as a perturbative correction. This can
be considered a suggestion also for the baryon case, even
if there are differences. Therefore, any interaction lead-
ing to unperturbed states with reasonable spin-averaged
values of the energy levels can be considered to contain
implicitly this kind of contribution. The splittings, which
are in general spin and isospin dependent, can be treated
perturbatively.

In this article we have shown that the complete in-
teraction including spin and isospin terms (see eq. (14)),
reproduces the position of the two Roper resonances of
the nucleon, while keeping the good description of the
negative-parity resonances. It should be noted that also

Table 3. All calculated delta resonances (in MeV) below
2 GeV. Tentative assignments of 1- and 2-star resonances are
shown in brackets.

State Mtheor Baryon

∆
1
2
+

1900 ∆(1910)P31

∆
1
2
+

1953

∆
1
2
−

1573 ∆(1620)S31

∆
1
2
−

1910 ∆(1900)S31

∆
3
2
+

1232 ∆(1232)P33

∆
3
2
+

1727 ∆(1600)P33

∆
3
2
+

1921 ∆(1920)P33

∆
3
2
+

1955

∆
3
2
+

2049

∆
3
2
−

1573 ∆(1700)D33

∆
3
2
−

1900 [∆(1940)D33]

∆
5
2
+

1901 ∆(1905)F35

∆
5
2
+

1956 [∆(2000)F35]

∆
7
2
+

1955 ∆(1950)F37

the higher states are accounted for. The hypercentral po-
tential is a good starting point for the construction of an
unperturbed spectrum and leads to realistic quark states,
as it is shown also by the reproduction of the e.m. form
factors and transition form factors, which are sensitive to
the wave functions. The configuration mixing is usually
a higher-order correction, apart from some special cases
as the neutron form factor or the S11(1650) helicity am-
plitude etc., for which the SU(6) contribution is vanish-
ing. In this respect, the forthcoming more precise data
that will be soon available will supply valuable informa-
tion concerning the possible SU(6) breaking terms in the
quark interaction. Finally, one can observe that the vari-
ous Constituent Quark Models give different results con-
cerning the 1* and 2* states and the position and number
of the missing resonances. Therefore, the expected new
data coming from the TJNAF will be very helpful in or-
der to discriminate among them.
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